Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7900340 | Journal of Non-Crystalline Solids | 2018 | 7 Pages |
Abstract
Tungsten tellurite glasses (TeO2-WO3-ZrO2) doped with various concentrations of Yb3+ ions have been prepared by the conventional melt-quenching method and systematically studied their spectroscopic and laser properties. The spectroscopic properties and some of the laser parameters have been evaluated from the measured absorption and emission spectra. Emission cross-sections evaluated from the McCumber and the Fuchtbauer-Ladenburg methods are found to be in good agreement. The absorption and emission cross-sections are found to be in the range of 2.78-1.30 (à10â 20 cm2) and 3.64-1.83 (à10â 20 cm2), respectively, when Yb3+ ions concentration increases from 0.01 to 3.0 mol%. A significant change in luminescence spectral profile for higher concentration (> 0.1 mol%) of Yb3+ ions has been explained as due to reabsorption effects. An initial increase of lifetime for the 2F5/2 level up to 0.5 mol% and decrease thereafter for higher concentrations (> 0.5 mol%) of Yb3+ ions has been explained with a suitable mechanism. The results of spectroscopic and laser parameters indicate that tungsten-tellurite glasses have potential applications as gain media for lasers and optical amplifiers.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
G. Venkataiah, P. Babu, I.R. MartÃn, K. Venkata Krishnaiah, K. Suresh, V. LavÃn, C.K. Jayasankar,