Article ID Journal Published Year Pages File Type
7927541 Optics Communications 2017 5 Pages PDF
Abstract
The exciton-phonon coupling between an optically driven quantum dot (QD) and a mechanical resonator can be described by Jaynes-Cummings model under a certain condition, revealing phonon absorption and emission. When two optically driven QDs share a common phonon mode, it shows the phonon-mediated coupling between the QDs. Based on the effective master equation for the reduced density matrix of the two QDs, the temporal evolution of each state and the concurrence (quantum entanglement) between them are studied. The results suggest that the stationary concurrence depends strongly on the resonator temperature. The non-negligible entanglement in the hybrid system is advantaged to develop solid-state quantum information processing.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,