Article ID Journal Published Year Pages File Type
7934471 Physica E: Low-dimensional Systems and Nanostructures 2015 8 Pages PDF
Abstract
In the paper a theoretical study of both the quantized energies of excitonic states and their wave functions in gapped graphene and in monolayer of MoS2 is presented. An integral two-dimensional Schrödinger equation of the electron-hole pairing for particles with electron-hole symmetry of reflection is analytically solved. The solutions of Schrödinger equation in momentum space in gapped graphene and in the direct band monolayer of MoS2 by projection the two-dimensional space of momentum on the three-dimensional sphere are found. We analytically solve an integral two-dimensional Schrödinger equation of the electron-hole pairing for particles with electron-hole symmetry of reflection and with strong spin-orbit coupling. In monolayer of MoS2 as well as in single-layer graphene (SLG) the electron-hole pairing leads to the exciton insulator states. Calculating an integral two-dimensional Schrödinger equation of the electron-hole pairing for bilayer graphene, exciton insulator states with a gap 3 meV are predicted. The particle-hole symmetry of Dirac equation of layered materials allows perfect pairing between electron Fermi sphere and hole Fermi sphere in the valence band and conduction band and hence driving the Cooper instability.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
,