Article ID Journal Published Year Pages File Type
793496 Journal of the Mechanics and Physics of Solids 2010 21 Pages PDF
Abstract

The fracture pattern in stressed bodies is defined through the minimization of a two-field pseudo-spatial-dependent functional, with a structure similar to that proposed by Bourdin–Francfort–Marigo (2000) as a regularized approximation of a parent free-discontinuity problem, but now considered as an autonomous model per se. Here, this formulation is altered by combining it with structured deformation theory, to model that when the material microstructure is loosened and damaged, peculiar inelastic (structured) deformations may occur in the representative volume element at the price of surface energy consumption. This approach unifies various theories of failure because, by simply varying the form of the class for admissible structured deformations, different-in-type responses can be captured, incorporating the idea of cleavage, deviatoric, combined cleavage-deviatoric and masonry-like fractures. Remarkably, this latter formulation rigorously avoid material overlapping in the cracked zones. The model is numerically implemented using a standard finite-element discretization and adopts an alternate minimization algorithm, adding an inequality constraint to impose crack irreversibility (fixed crack model). Numerical experiments for some paradigmatic examples are presented and compared for various possible versions of the model.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,