Article ID Journal Published Year Pages File Type
7963032 Journal of Nuclear Materials 2018 9 Pages PDF
Abstract
Additive manufacturing of thorium dioxide has been investigated using a commercially available stereolithography-based 3D printer and photopolymer resin. Three-dimensional thorium dioxide objects have been printed with good dimensional accuracy. High-density thorium dioxide parts (>90% theoretical density) were achieved by sintering the 3D-printed parts. Despite significant shrinkage, the overall shape of the objects was maintained during sintering with slight distortion. Additive manufacturing is seen to have potential application for advanced nuclear fuel concepts with complex geometries.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, ,