Article ID Journal Published Year Pages File Type
7963398 Journal of Nuclear Materials 2018 4 Pages PDF
Abstract
Hydrogen uptake and accommodation into U3Si2, a candidate accident-tolerant fuel system, has been modelled on the atomic scale using the density functional theory. The solution energy of multiple H atoms is computed, reaching a stoichiometry of U3Si2H2 which has been experimentally observed in previous work (reported as U3Si2H1.8). The absorption of hydrogen is found to be favourable up to U3Si2H2 and the associated volume change is computed, closely matching experimental data. Entropic effects are considered to assess the dissociation temperature of H2, estimated to be at ∼800 K - again in good agreement with the experimentally observed transition temperature.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , ,