Article ID Journal Published Year Pages File Type
7963486 Journal of Nuclear Materials 2018 6 Pages PDF
Abstract
Effects of pre-damage by 500 keV argon ion implantation on deuterium-induced blistering in tungsten has been investigated. After low-energy (40 eV) and high-flux (∼1024 D/m2s) deuterium plasma exposure with short exposure duration (100 s), a large increase of deuterium retention is found in the pre-damaged tungsten, while surface blistering is significantly suppressed as compared to the un-damaged one. According to elastic recoil detection analysis, a local deuterium concentration peak is observed at a depth of ∼100 nm for the un-damaged tungsten, which is supposed to be related to the surface blistering with nanometer size. Comparison of deuterium retention in the near surface (within 300 nm) and in the bulk suggests that deuterium inward diffusion is more significant in the pre-damaged tungsten. It is speculated that the creation of deuterium trap-sites and enhancement of deuterium inward diffusion give rise to an increase of critical deuterium concentration for blistering and contribute to the suppressed deuterium-induced blistering on pre-damaged tungsten under the present exposure conditions.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , , , ,