Article ID Journal Published Year Pages File Type
7963898 Journal of Nuclear Materials 2016 8 Pages PDF
Abstract
This work aims to investigate the effects of confined cold rolling on the evolution of microstructure, hardness, and helium irradiation performance of high purity tungsten (W). Using a final rolling temperature of 450 °C, W samples were severely deformed by confined cold rolling up to equivalent strains (εeq) of 1.6 and 3.3. Experimental results indicate that the average grain size of W specimens processed by confined cold rolling has been greatly reduced, and the rolled W samples with εeq ∼3.3 do not show an “ideal texture” of (001)[110] which is the expected texture of bcc metals processed by conventional cold rolling. The irradiation resistance against 60 keV He+ ions with up to a dose of 1.5 × 1022 ions·m−2 of the rolled W is compared to that of the as-received W. Results show that, due to an improvement of the metal's ductility, blister bursting with a partially opened lid forms on the surface of the rolled W, whereas blister bursting with a fully opened lid forms on the surface of the as-received W.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , ,