Article ID Journal Published Year Pages File Type
7965746 Journal of Nuclear Materials 2015 5 Pages PDF
Abstract
The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20 μm and 40 μm grain size) to deuterium plasma at the same particle fluence (1026 m−2) and incident ion energy (40 eV) to two different ion fluxes (low flux: 1022 m−2 s−1, high flux: 1024 m−2 s−1). The maximum of deuterium retention was observed at ∼630 K for low flux density and at ∼870 K for high flux density, as indicated from the thermal desorption spectroscopy data (TDS). Scanning electron microscopy observations revealed the presence of blisters with a diameter of up to 1 μm which were formed at high flux density and high temperature (1170 K) contrasting with previously reported surface modification results at such exposure conditions.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , , , , , ,