Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7966104 | Journal of Nuclear Materials | 2015 | 7 Pages |
Abstract
By performing a two-step uniaxial diffusion bonding, the reliable joining between CLAM/CLAM steels has been attained. The microstructures at the vicinity of the joint region and in base material were respectively investigated through OM, SEM and TEM. The joint interface was integrated, and no microstructural defects were observed. In the base material, small amount of austenite is retained as thin films between martensite laths, which was suggested to be related to the compressive deformation in diffusion bonding. As a candidate structural material for the first wall in fusion energy systems, the radiation resistance of CLAM steel would be deteriorated by the retained austenite. Tensile and impact tests were carried out to assess the reliability of the joints subjected to post bond heat treatment. All the tensile specimens fractured in the base CLAM steel, meaning the good joining between CLAM steels. However, due to the low impact absorbed energy of the joints, efforts should still be made to optimize the bonding technology and the post bond heat treatment further.
Related Topics
Physical Sciences and Engineering
Energy
Nuclear Energy and Engineering
Authors
Xiaosheng Zhou, Yongchang Liu, Liming Yu, Chenxi Liu, Guofa Sui, Jianguo Yang,