Article ID Journal Published Year Pages File Type
7966414 Journal of Nuclear Materials 2015 11 Pages PDF
Abstract
Ferritic-martensitic (FM) steel T91 was subjected to irradiation with 3 MeV protons while under load at stresses of 100-200 MPa, temperatures between 400 °C and 500 °C, and dose rates between 1.4 × 10−6 dpa/s and 5 × 10−6 dpa/s to a total dose of less than 1 dpa. Creep behavior was analyzed for parametric dependencies. The temperature dependence was found to be negligible between 400 °C and 500 °C, and the dose rate dependence was observed to be linear. Creep rate was proportional to stress at low stress values and varied with stress to the power 14 above 160 MPa. The large stress exponent of the proton irradiation creep experiments under high stress suggested that dislocation glide was driving both thermal and irradiation creep. Microstructure observations of anisotropic dislocation loops also contributed to the total creep strain. After subtracting the power law creep and anisotropic dislocation loop contributions, the remaining creep strain was accounted for by dislocation climb enabled by stress induced preferential absorption (SIPA) and preferential dislocation glide (PAG).
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, ,