Article ID Journal Published Year Pages File Type
796655 Journal of the Mechanics and Physics of Solids 2014 17 Pages PDF
Abstract

We perform an optimal-scaling analysis of ductile fracture in metals. We specifically consider the deformation up to failure of a slab of finite thickness subject to monotonically increasing normal opening displacements on its surfaces. We show that ductile fracture emerges as the net outcome of two competing effects: the sublinear growth characteristic of the hardening of metals and strain-gradient plasticity. We also put forth physical arguments that identify the intrinsic length of strain-gradient plasticity and the critical opening displacement for fracture. We show that, when Jc is renormalized in a manner suggested by the optimal scaling laws, the experimental data tends to cluster—with allowances made for experimental scatter—within bounds dependent on the hardening exponent but otherwise material independent.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,