Article ID Journal Published Year Pages File Type
7967259 Journal of Nuclear Materials 2014 8 Pages PDF
Abstract
An atom probe tomography study of the microstructure of a Zircaloy-2 material subjected to 9 annual cycles of BWR exposure has been conducted. Upon dissolution of secondary phase particles, Fe and Cr are seen to reprecipitate in large numbers of clusters and particles of 1-5 nm sizes throughout the Zr metal matrix. Fe and Sn were observed to segregate to ring-shaped features in the metal that are interpreted to be -component vacancy loops. This implies that these two elements play a major role in the irradiation growth phenomenon in Zr alloys, which is believed to be caused by the formation of -loops. Similarly to autoclave-corroded Zr alloys, the formation of a sub-oxide layer of approximate composition ZrO was observed. On the other hand, no oxygen saturated metal phase was detected underneath the oxide scale.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , ,