Article ID Journal Published Year Pages File Type
7967686 Journal of Nuclear Materials 2014 7 Pages PDF
Abstract
Advanced TRISO coated particles with a ZrC coating layer as a main pressure boundary were fabricated by a fluidized-bed chemical vapor deposition (FBCVD) method using a chloride process. Experiments were performed to determine the effect of codeposition of graphitic carbon on the hardness and obtain the stoichiometric ZrC phase. The ZrC coating layer was composed of a mixture of ZrC and graphitic carbon phases at a low ZrCl4/CH4 ratio. A near-stoichiometric ZrC without the free carbon can be obtained by employing an impeller-driven ZrCl4 vaporizer. The codeposition of the graphitic carbon significantly lowered the hardness of ZrC while increasing the fraction of the carbon. The hardness reached its maximum when ZrC was in a slight carbon deficit without free carbon. As the graphitic carbon increased up to 12 vol%, the hardness was reduced by approximately 50% compared to the near-stoichiometric ZrC.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , ,