Article ID Journal Published Year Pages File Type
7967696 Journal of Nuclear Materials 2014 11 Pages PDF
Abstract
Achieving inherent safety of the High Temperature Reactor relies on the exceptional performance of its fuel. The design foresees complete encapsulation of all fissionable material by layers of carbon and silicon carbide (SiC) forming the tristructural-isotropic fuel particle. Its mechanical integrity and ability to fully retain fission products even in the event of an accident is a vital safety concern. The present study investigates the effect of post-deposition annealing on the SiC coating at design-based accident temperatures and beyond. Therefore, samples of simulated fuel have been fabricated by fluidized bed chemical vapour deposition and thermally treated in inert atmosphere up to 2200 °C. Nanoindentation and crush test measurements showed only minor reductions of elastic modulus and fracture strength up to 2000 °C. Substantial weight loss and crystal growth were observed at annealing temperatures of 2100 °C and above. Raman spectroscopy identified the formation of a multi-layered graphene film covering the SiC grains after annealing and scanning electron microscopy revealed significant porosity formation within the coating from 1800 °C onwards. These observations were attributed towards an evaporation-precipitation mechanism of SiC at very elevated temperatures that only slightly diminishes the hardness, elastic modulus or fracture strength, but might still be problematic in respect to fission product retention of the SiC layer.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, ,