Article ID Journal Published Year Pages File Type
7967710 Journal of Nuclear Materials 2014 8 Pages PDF
Abstract
Zirconium alloys such as Zircaloy-4 are used in nuclear applications due to adequate strength, ductility and resistance to radiation damage. Recent modeling efforts have focused on improvements to the predicted elastic-plastic response, complicated by the strong strength-differential (S-D) effects in HCP materials. This study develops a pressure-insensitive, continuum plasticity model, dependent on the second and third invariants of the stress deviator (J2 and J3), with an internal variable related to the plastic strain to describe the tension-compression asymmetry of a β-treated Zircaloy-4. Plastic deformation drives isotropic and distortional hardening of the non-Mises yield surface. The proposed plasticity model has been calibrated and validated using measured results from an experimental test program. Results show that the proposed model captures the complex elastic-plastic response observed in measured load-displacement and torque-rotation curves over a range of triaxiality and Lode parameter values.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , ,