Article ID Journal Published Year Pages File Type
7968025 Journal of Nuclear Materials 2014 12 Pages PDF
Abstract
In order to simulate high-burnup fuel cladding degradation under various interim dry storage conditions, 250 ppm and 500 ppm hydrogen-charged Zr-Nb alloy cladding tubes were used to investigate the effect of terminal cool-down temperature on hydride reorientations and subsequent mechanical property degradations under a tensile hoop stress of 150 MPa with two cooling rates of 2.0 and 7.0 °C/min from a peak temperature of 400 °C to three respective terminal cool-down temperatures of 300, 200 and 25 °C. The cool-down tests showed that the slower cooling rate, the lower terminal cool-down temperature and the higher hydrogen content generated the larger fraction of radial hydrides precipitated during the cool-down. This may be explained by hydrogen solid solubilities for precipitation at the respective terminal cool-down temperatures, by cooling rate-dependent residence times at a relatively high temperature during the cool-down and by remaining circumferential hydrides prior to the cool-down. Ultimate tensile strengths, plastic strains and fracture modes for the tensile-tested specimens are found to be well correlated to the amount of the radial and circumferential hydrides and hydride morphologies.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , ,