Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7968253 | Journal of Nuclear Materials | 2014 | 6 Pages |
Abstract
In order to increase the lithium density and control the lithium mass loss at elevated temperature, development of Li2TiO3 pebbles with excess Li is needed. In this paper, Li2TiO3 core-shell pebbles with different Li/Ti molar ratios were fabricated by a gel-casting method using Li2TiO3 and Li2CO3 as starting materials. Differential thermal analysis appending a thermogravimetric analyzer (DTA-TG) and X-ray diffraction (XRD) were employed to understand the solid-state reactions. And then the calcining and sintering processes were optimized. Microstructure, element distribution, crush load and density of the pebbles were also investigated. The experimental results showed that the pebble had a Li2TiO3-Li4TiO4 complex phase core and a tunable thickness Li2TiO3 shell, and the lithium density of the pebbles significantly increased with the increasing of the Li/Ti ratio. The optimum Li/Ti ratio was 2.7, and the pebbles displayed a good crush load (about 32 N) when sintered at 950 °C for 2 h in N2 atmosphere.
Related Topics
Physical Sciences and Engineering
Energy
Nuclear Energy and Engineering
Authors
Ming Hong, Yingchun Zhang, Yingying Mi, Maoqiao Xiang, Yun Zhang,