Article ID Journal Published Year Pages File Type
797442 Journal of the Mechanics and Physics of Solids 2007 25 Pages PDF
Abstract

In the variational model for brittle fracture proposed in Francfort and Marigo [1998. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342], the minimum problem is formulated as a free discontinuity problem for the energy functional of a linear elastic body. A family of approximating regularized problems is then defined, each of which can be solved numerically by a finite element procedure. Here we re-formulate the minimum problem within the context of finite elasticity. The main change is the introduction of the dependence of the strain energy density on the determinant of the deformation gradient. This change requires new, more general existence and ΓΓ-convergence results. The results of some two-dimensional numerical simulations are presented, and compared with corresponding simulations made in Bourdin et al. [2000. Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826] for the linear elastic model.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,