Article ID Journal Published Year Pages File Type
800811 Mechanics Research Communications 2015 8 Pages PDF
Abstract

•An aniso-plastic constitutive model considering anistropy evolution is proposed.•Damage exists and porosity evolves in shear deformations due to anisotropy.•The stress triaxiality can become as large in shear as in tension.

Materials get damaged under shear deformations. Edge cracking is one of the most serious damage to the metal rolling industry, which is caused by the shear damage process and the evolution of anisotropy. To investigate the physics of the edge cracking process, simulations of a shear deformation for an orthotropic plastic material are performed. To perform the simulation, this paper proposes an elasto-aniso-plastic constitutive model that takes into account the evolution of the orthotropic axes by using a bases rotation formula, which is based upon the slip process in the plastic deformation. It is found through the shear simulation that the void can grow in shear deformations due to the evolution of anisotropy and that stress triaxiality in shear deformations of (induced) anisotropic metals can develop as high as in the uniaxial tension deformation of isotropic materials, which increases void volume. This echoes the same physics found through a crystal plasticity based damage model that porosity evolves due to the grain-to-grain interaction. The evolution of stress components, stress triaxiality and the direction of the orthotropic axes in shear deformations are discussed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,