Article ID Journal Published Year Pages File Type
802156 Probabilistic Engineering Mechanics 2014 10 Pages PDF
Abstract

•Hybrid scheme of wavelet and SRM is proposed for vector-valued nonstationary process simulation.•This scheme takes advantage of FFT and is easy to use. Its effectiveness and limitation are studied.•Application of POD in simulation via nonstationary spectra decomposition is not invalid.

Currently, the classical spectral representation method (SRM) for nonstationary process simulation is widely used in the engineering community. Although this scheme has the higher accuracy, the time-dependent spectra results in unavailability of fast Fourier transform (FFT) and thus the simulation efficiency is lower. On the other hand, the approach based on stochastic decomposition can apply FFT in the simulation. However, the algorithm including the fitting procedure is relatively complicated and thus limits its use in practice.In this paper, the hybrid efficient simulation method is proposed for the vector-valued nonstationary process, which contains the spectra decomposition via wavelets and SRM. This method can take advantage of FFT and is also straightforward to engineering application. Numerical examples are employed to evaluate the proposed method. Results show that the method performs fairly well for the scalar process and vector-valued process with real coherence function. In the case of complex coherence function, the majority of the phase in the coherence function cannot be remained in the simulation. In addition, the validity of proper orthogonal decomposition (POD) in nonstationary process simulation via the decomposition of the time-dependent nonstationary spectra is studied. Analysis shows that the direct use of POD in nonstationary spectra decomposition may not be useful in nonstationary process simulations.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,