Article ID Journal Published Year Pages File Type
8051725 Applied Mathematical Modelling 2018 18 Pages PDF
Abstract
In this paper, we significantly extend the applicability of state-of-the-art ELDP (equations for linearizing discrete product terms) method by providing a new linearization to handle more complicated non-linear terms involving both of discrete and bounded continuous variables. A general class of “representable programming problems” is formally proposed for a much wider range of engineering applications. Moreover, by exploiting the logarithmic feature embedded in the discrete structure, we present an enhanced linear reformulation model which requires half an order fewer equations than the original ELDP. Computational experiments on various engineering design problems support the superior computational efficiency of the proposed linearization reformulation in solving engineering optimization problems with discrete and bounded continuous variables.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,