Article ID Journal Published Year Pages File Type
8053471 Applied Mathematics Letters 2018 8 Pages PDF
Abstract
In this paper, the superconvergence analysis of a two-grid method (TGM) is established for the semilinear parabolic equations. Based on the combination of the interpolation and Ritz projection technique, an important ingredient in the method, the superclose estimates in the H1-norm are deduced for the backward Euler fully-discrete TGM scheme. Moreover, through the interpolated postprocessing approach, the corresponding global superconvergence result is derived. Finally, some numerical results are provided to confirm the theoretical analysis, and also show that the computing cost of the proposed TGM is only half of the conventional Galerkin finite element methods (FEMs).
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,