Article ID Journal Published Year Pages File Type
8054472 Applied Mathematics Letters 2015 6 Pages PDF
Abstract
Many experimental systems in biology, especially synthetic gene networks, are amenable to perturbations that are controlled by the experimenter. We developed an optimal design algorithm that calculates optimal observation times in conjunction with optimal experimental perturbations in order to maximize the amount of information gained from longitudinal data derived from such experiments. We applied the algorithm to a validated model of a synthetic Brome Mosaic Virus (BMV) gene network and found that optimizing experimental perturbations may substantially decrease uncertainty in estimating BMV model parameters.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,