Article ID Journal Published Year Pages File Type
8067147 Annals of Nuclear Energy 2018 7 Pages PDF
Abstract
This paper presents an application of the hybrid transport point kinetic (HTPK) technique to the reactivity determination in subcritical reactor configurations. The mathematical model of the HTPK, initially proposed by Picca et al. (2011) to simulate the time-dependent neutron transport, is here extended to incorporate delayed emissions. The classical area method (SjÓ§strand, 1956), developed to invert the point kinetic (PK) model, is then adapted to accommodate the peculiarities of the HTPK approach, to allow its analytical inversion. This novel inverse neutron kinetic methodology is tested on a three-region reactor configuration, showing the interesting performance of the approach based on the HTPK model as compared to the standard area method and highlighting its potential to overcome some of the limitations of the PK-based inversion.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,