Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8069617 | Annals of Nuclear Energy | 2014 | 12 Pages |
Abstract
After the Fukushima accident, safe, stable and efficient operation of reactors is very necessary for the development of nuclear power industry. Since pressurized water reactor (PWR) is the mostly widely used fission reactor, the improvement of its operation performance is quite meaningful. Self-stability is the most important dynamic feature of any reactors, and analyzing the self-stability can give the approach of improving the operation performance. With this in mind, the self-stability analysis of the PWR is presented through the shifted-ectropy based approach, and sufficient conditions for the globally asymptotic self-stability in cases of negative, zero and positive coolant temperature feedback coefficient are all established. The correctness of the theoretical results are finally verified through numerical simulation. The results of this paper give the way to not only guaranteeing self-stability through physical and thermal-hydraulic reactor design but also strengthening closed-loop stability and robustness by the means of feedback control.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
Zhe Dong,