Article ID Journal Published Year Pages File Type
8084122 Progress in Nuclear Energy 2018 15 Pages PDF
Abstract
A novel, hierarchical Haar wavelet basis is introduced and used to discretise the angular dimension of the Boltzmann transport equation. This is used in conjunction with a finite element subgrid scale method. This combination is then validated using two steady-state radiation transport problems, namely a 2D dogleg-duct shielding problem and the 2D C5MOX OECD/NEA benchmark. It is shown that the scheme has many similarities to a traditional equal weighted discrete ordinates (Sn) angular discretisation, but the strong motivation for our hierarchical Haar wavelet method is the potential for adapting in angle in a simple fashion through elimination of redundant wavelets. Initial investigations of this adaptive approach are presented for a shielding and criticality eigenvalue example. It is shown that a 60% reduction in the number of angles needed on most spatial nodes - and rising up to 90% on nodes located in high streaming areas - can be attained without adversely affecting the accuracy of the solution.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , ,