Article ID Journal Published Year Pages File Type
8093778 Journal of Cleaner Production 2018 56 Pages PDF
Abstract
Growing environmental concerns and social legislations enforce decision makers to design their supply chains considering environmental and social impacts as well as economical objectives. Degradation difficulties and recovering profits lead to recycle scraped tires regarding the sustainability factors. This paper firstly develops a multi-objective mixed integer linear programming model for designing of sustainable tire closed-loop supply chain network. The proposed model aims to optimize total cost, environmental impacts of establishment of facilities, processing of tires and transportation between each level as well as social impacts including job opportunities and work's damages. To alleviate the drawbacks of existing metaheuristic algorithms when solving the large-scale networks, four new hybrid metaheuristic algorithms based on the advantages of recent and old ones are developed. To evaluate the quality of the proposed hybrid algorithms, extensive computational experiments, comparison, and sensitivity analyses are conducted with different criteria. Results reveal that hybrid algorithms are effective approaches to solve the underlying problem in large-scale networks.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,