Article ID Journal Published Year Pages File Type
8131701 Advances in Space Research 2018 14 Pages PDF
Abstract
Within the post-Newtonian approximation of General Relativity, modified orbital equations are obtained by adding relativistic corrections to the Newtonian equations of motion. We analyze the accuracy of this approximation with respect to the general relativistic setting. Therefore, we solve the post-Newtonian equation of motion using the eXtended High Performance Satellite dynamics Simulator. For corresponding initial conditions, we compare orbits in the Schwarzschild spacetime to those in its post-Newtonian approximation. Moreover, we compare the magnitude of relativistic contributions to several typical perturbations of satellite orbits due to, e.g., solar radiation pressure, Earth's albedo, and atmospheric drag. This comparison is done for our test scenarios and for a real GRACE orbit to highlight the importance of relativistic effects in geodetic space missions. For the considered orbits, first-order relativistic contributions give accelerations of about 20 nm/s2 and are dominant in the radial direction.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , , , , , , ,