Article ID Journal Published Year Pages File Type
814775 Rare Metal Materials and Engineering 2014 7 Pages PDF
Abstract

The SiCf/Ti-6Al-4V composites were fabricated by the matrix-coated fiber (MCF) process under two different hot isostatic pressing (HIP) processing parameters. Both microstructural characteristics and grain growth behavior in the matrix were investigated based on a combination of experimental observations and theoretical predictions. The main microstructural characteristics including matrix component phases and their corresponding chemical composition, morphology and volume fraction were systematically examined using EDS and SEM analyses, providing valuable insight into understanding the matrix microstructural evolution during consolidation processing from initial Ti-6Al-4V matrix-coated fibers (MCFs) to the final SiCf/Ti-6Al-4V composites. A dynamic recrystallization (DRX) model coupled with Lifshitz-Slyosov-Wagner (LSW) theory were also used to predict the grain growth occurring in the matrix during consolidation processing. Correlation between the theoretical predictions and experimental results were also discussed.

Related Topics
Physical Sciences and Engineering Engineering Mechanics of Materials