Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8147754 | Current Applied Physics | 2018 | 19 Pages |
Abstract
Tin sulfide (SnS) film is grown by sputtering process with subsequent post-sulfurization. As-deposited SnS consists of orthorhombic and cubic structure SnS whereas post-sulfurized films showed pure orthorhombic crystal structure. This structural transformation was confirmed by X-ray diffraction (XRD), Raman spectroscopy and UV-Vis spectroscopy. We used post-annealed SnS film as an absorber layer of solar cell. The fabricated SnS solar cell was composed of SLG/Mo/SnS/CdS/i-ZnO/ITO. We measured current density-voltage (J-V) and external quantum efficiency (EQE) curves for the completed devices. The best efficiency of SnS solar cell was â¼0.5%. The EQE curve showed existence of multiple phases of SnS, even though XRD and Raman spectroscopy showed pure SnS phase. The multiple phases were observed again by photoluminescence (PL). PL also revealed deep defect states of SnS absorber. Thus, the inhomogeneous SnS absorber is one of the main bottlenecks for high efficiency SnS solar cell.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Tanka Raj Rana, SeongYeon Kim, JunHo Kim,