Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8148089 | Current Applied Physics | 2018 | 5 Pages |
Abstract
This work investigated the effects of heating rate and annealing on the magneto-optical properties of bismuth-substituted yttrium iron garnet (Bi-YIG) thin films on glass and (111)-oriented single-crystalline gadolinium gallium garnet (GGG) substrates fabricated by metal-organic decomposition (MOD). We modified the MOD method by eliminating the pre-annealing process. We performed annealing at various temperatures to determine the optimal temperature for obtaining the Bi-YIG phase. We then annealed at the optimized temperature using various heating rates. The optimal conditions were annealing for 1 h at 750 °C at a heating rate of 30 °C/min on GGG to obtain highly crystallized fine grains. The Faraday rotation for this film was about â10.5°/μm. The optimized heating rate enhanced the magneto-optical properties due to improved crystallinity and saturated magnetization. The Bi-YIG thin films prepared by this prescribed MOD method exhibited excellent magneto-optical performance and are potential candidates for applications in optical devices.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Viet Dongquoc, Rambabu Kuchi, Phuoc Cao Van, Soon-Gil Yoon, Jong-Ryul Jeong,