Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8162379 | Physica B: Condensed Matter | 2014 | 11 Pages |
Abstract
At low temperatures, the anisotropy energy can significantly affect heat capacity of a superparamagnetic “ideal gas”. At sufficiently low temperatures, when the anisotropy energy of uniaxial magnetic nanoparticles exceeds the energy of thermal fluctuations, the anisotropy energy can be expressed as a sum of the energies of two thermodynamic subsystems (two potential wells). One of these subsystems is composed of magnetic nanoparticles oriented predominantly along the axis of anisotropy, and the other - of particles of opposite orientation. There is a similarity between the considered anisotropy energy and the two-level quantum system. Therefore, the temperature dependence of the magnetic part of the heat capacity (similar to Schottky anomaly) will have a sharp peak. At low temperatures, on the curve of the temperature dependence of the heat capacity, besides a usual T3 background, a portion with a pronounced maximum is monitored. The relation between the maximum heat capacity and the magnetic anisotropy constant is derived. Using this relation and measuring the maximum heat capacity at a given temperature, the numerical value of the magnetic anisotropy constant can be obtained.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
A. Ugulava, S. Chkhaidze, Sh. Kekutia, M. Verulashvili,