Article ID Journal Published Year Pages File Type
8167938 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2017 31 Pages PDF
Abstract
Spectral photon-counting CT (SPCCT) is an emerging X-ray imaging technology that extends the scope of available diagnostic imaging tools. The main advantage of photon-counting CT technology is better sampling of the spectral information from the transmitted spectrum in order to benefit from additional physical information being produced during matter interaction, including photo-electric and Compton effects, and the K-edge effect. The K-edge, which is specific for a given element, is the increase in X-ray absorption of the element above the binding energy between its inner electronic shell and the nucleus. Hence, the spectral information contributes to better characterization of tissues and materials of interest, explaining the excitement surrounding this area of X-ray imaging. Other improvements of SPCCT compared with conventional CT, such as higher spatial resolution, lower radiation exposure and lower noise are also expected to provide benefits for diagnostic imaging. In this review, we describe multi-energy CT imaging, from dual energy to photon counting technology, and our initial experience results using a clinical-scale spectral photon counting CT (SPCCT) prototype system in vitro and in vivo. In addition, possible clinical applications are introduced.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , , , , , , , , ,