Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
817872 | Composites Part B: Engineering | 2014 | 8 Pages |
Abstract
The healing process of long bones such as the tibia was simulated on the basis of a mechanoregulation theory by taking blood vessel growth into consideration. The tissue differentiation process of calluses by taking into consideration blood vessel growth was simulated by a user subroutine program based on the mechanoregulation model and a diffusion equation. Composite bone plates made of a plain weave carbon/epoxy composite (WSN3k) and a plain weave glass/polypropylene composite (Twintex) were applied to the fracture site to investigate the effect of plate modulus on the healing performance. The simulation results revealed that the flexible composite bone plate made of Twintex [0]18, which had a slightly higher Young's modulus than a cortical bone, provided the highest healing performance. Moreover, it was found that the effect of the plate modulus on the healing performance reduced when the blood vessel growth at the fracture site was considered, which reflected a more realistic bone healing process.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Dae-Sung Son, Hassan Mehboob, Seung-Hwan Chang,