Article ID Journal Published Year Pages File Type
8182786 Nuclear Physics A 2018 12 Pages PDF
Abstract
The decay of various compound nuclei formed via exotic neutron-rich 9Li projectile is studied within the dynamical cluster-decay model (DCM). Following the earlier work of one of us (RKG) and collaborators (M. Kaur et al. (2015) [1]), for an empirically fixed neck-length parameter ΔRemp, the only parameter in the DCM, at a given incident laboratory energy ELab, we are able to fit almost exactly the (total) fusion cross section σfus=∑x=16σxn for 9Li projectile on 208Pb and other targets, with σfus depending strongly on the target mass of the most abundant isotope and its (magic) shell structure. This result shows the predictable nature of the DCM. The neck-length parameter ΔRemp is fixed empirically for the decay of 217At⁎ formed in 9Li + 208Pb reaction at a fixed laboratory energy ELab, and then the total fusion cross section σfus calculated for all other reactions using 9Li as a projectile on different targets. Apparently, this procedure could be used to predict σfus for 9Li-induced reactions where experimental data are not available. Furthermore, optimum choice of “cold” target-projectile combinations, forming “hot” compact configurations, are predicted for the synthesis of compound nucleus 217At⁎ with 8Li + 209Pb as one of the target-projectile combination, or another (t,p) combination 48Ca + 169Tb, with a doubly magic 48Ca, as the best possibility.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics
Authors
, , , ,