Article ID Journal Published Year Pages File Type
8208097 Results in Physics 2018 5 Pages PDF
Abstract
Fractal calculus is very simple but extremely effective to deal with phenomena in hierarchical or porous media. Its operation is almost same with that by the advanced calculus, making it much accessible to all non-mathematicians. This paper begins with the basic concept of fractal gradient of temperature, i.e., the temperature change between two points in a fractal medium, to reveal the basic properties of fractal calculus. The fractal velocity and fractal material derivative are then introduced to deduce laws for fluid mechanics and heat conduction in fractal space. Conservation of mass in a fractal space is geometrically explained, and an approximate transform of a fractal space on a smaller scale into its continuous partner on a larger scale is illustrated by a nanofiber membrane, which is smooth on any observable scales, but its air permeability has to studied in a nano scale, under such a small scale, the nanofiber membrane becomes a porous one. Finally an example is given to explain cocoon's heat-proof property, which cannot be unveiled by advanced calculus.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
,