Article ID Journal Published Year Pages File Type
823602 Comptes Rendus Mécanique 2015 14 Pages PDF
Abstract

A robust and well-balanced numerical model is developed for solving the two-layer shallow water equations based on the approximate Riemann solver in the framework of finite-volume methods. The HLL (Harten, Lax, and van Leer) solver is employed to calculate the numerical fluxes. The numerical balance between the flux gradient and the source terms is achieved by using a balance-reformulation method. To obtain exactly the lake-at-rest solutions as the water depth is chosen as the conserved variable for the continuity equations, a modified HLL flux formulation is proposed for mass flux calculations. Several numerical tests used to validate the performance of the developed numerical model. The results show that the developed model is accurate, well balanced, and that it predicts no oscillations around large gradients.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,