Article ID Journal Published Year Pages File Type
825040 International Journal of Engineering Science 2013 9 Pages PDF
Abstract

The nonlinear forced vibrations of a microbeam are investigated in this paper, employing the strain gradient elasticity theory. The geometrically nonlinear equation of motion of the microbeam, taking into account the size effect, is obtained employing a variational approach. Specifically, Hamilton’s principle is used to derive the nonlinear partial differential equation governing the motion of the system which is then discretized into a set of second-order nonlinear ordinary differential equations (ODEs) by means of the Galerkin technique. A change of variables is then introduced to this set of second-order ODEs, and a new set of ODEs is obtained consisting of first-order nonlinear ordinary differential equations. This new set is solved numerically employing the pseudo-arclength continuation technique which results in the frequency–response curves of the system. The advantage of this method lies in its capability of continuing both stable and unstable solution branches.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,