Article ID Journal Published Year Pages File Type
8252035 Radiation Physics and Chemistry 2017 9 Pages PDF
Abstract
In this study, the nanocomposites based on semiconductor lead sulfide (PbS) nanoparticles and poly(vinyl alcohol) (PVA) were investigated. The gamma irradiation induced in situ incorporation of PbS nanoparticles in crosslinked polymer network i.e. PVA hydrogel was performed. PVA hydrogel was previously obtained also under the influence of gamma irradiation. UV-Vis absorption and X-ray diffraction measurements were employed to investigate optical and structural properties of PbS nanoparticles, respectively, and obtained results indicates the presence of nanoparticles with approximately 6 nm in diameter and face centered cubic rock-salt crystal structure. The porous morphology was confirmed by scanning electron microscopy. Swelling data revealed that investigated hydrogels (PVA and PbS-PVA nanocomposite) shows non-Fickian diffusion, indicating that both diffusion and polymer relaxation processes controlled the fluid transport. The values of diffusion coefficients have an order of magnitude 10−9 cm2/s (typical values for water diffusion in polymers) and the best fit with the experimental results showed the Etters approximation. Comparing the thermal properties of PbS-PVA xerogel nanocomposite with PVA xerogel it was observed that incorporation of PbS nanoparticles in crosslinked PVA matrix just slightly enhanced the thermal stability of nanocomposite.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , , ,