Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
825218 | International Journal of Engineering Science | 2011 | 9 Pages |
This paper builds on the recently begun extension of continuum thermomechanics to fractal media which are specified by a fractional mass scaling law of the resolution length scale R. The focus is on pre-fractalmedia (i.e., those with lower and upper cut-offs) through a technique based on a dimensional regularization, in which the fractal dimension D is also the order of fractional integrals employed to state global balance laws. In effect, the governing equations are cast in forms involving conventional (integer-order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order but containing coefficients involving D and R, as well as a surface fractal dimension d. While the original formulation was based on a Riesz measure—and thus more suited to isotropic media—the new model is based on a product measure capable of describing local material anisotropy. This measure allows one to grasp the anisotropy of fractal dimensions on a mesoscale and the ensuing lack of symmetry of the Cauchy stress. This naturally leads to micropolar continuum mechanics of fractal media. Thereafter, the reciprocity, uniqueness and variational theorems are established.