Article ID Journal Published Year Pages File Type
8252537 Radiation Physics and Chemistry 2015 20 Pages PDF
Abstract
The thermalization length and spatial distribution of electrons in liquid water were simulated for initial electron energies ranging from 0.1 eV to 100 keV using a dynamic Monte Carlo code. The results showed that electrons were decelerated for thermalization over a longer time period than was previously predicted. This long thermalization time significantly contributed to the series of processes from initial ionization to hydration. We further studied the particular deceleration process of electrons at an incident energy of 1 eV, focusing on the temporal evolution of total track length, mean traveling distance, and energy distributions of decelerating electrons. The initial prehydration time and thermalization periods were estimated to be approximately 50 and 220 fs, respectively, indicating that the initial prehydration began before or contemporaneously with the thermal equilibrium. Based on these results, the prehydrated electrons were suggested to play an important role during multiple DNA damage induction.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , ,