Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8253528 | Chaos, Solitons & Fractals | 2018 | 14 Pages |
Abstract
The present research article is focused to analyze the blood mediated nanoparticle transportation through the atherosclerotic artery. The wall property on the atherosclerotic artery is also assumed to create resemblance with permeability characteristic of the arterial wall thickness. Heat transfer property of the catheter wall as well as the arterial wall is taken into account for the purpose to attenuate the stenotic lesions. To discuss the problem, mathematical model is developed through phase flow approach with hybrid nanofluid phenomena. Arterial pressure in the stenotic artery is also discussed through tapering impacts. Further, flow configurations of hemodynamics are evaluated to discuss the flow of blood through atherosclerotic artery. The outcomes obtained in this analysis are useful in biomedical related application. It is concluded from this mathematical problem through graphical results that the use of Cu-Al2O3/blood is more suitable to reduce the resistance to flow of the atherosclerotic artery when compared to the case of Cu-blood. Moreover, a wall properties impact depicts that hemodynamics of atherosclerotic artery increases.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Statistical and Nonlinear Physics
Authors
S. Ijaz, S. Nadeem,