Article ID Journal Published Year Pages File Type
8256331 Physica D: Nonlinear Phenomena 2016 8 Pages PDF
Abstract
In the coastal ocean, large amplitude, horizontally propagating internal wave trains are commonly observed. These are long nonlinear waves and can be modelled by equations of the Korteweg-de Vries type. Typically they occur in regions of variable bottom topography when the variable-coefficient Korteweg-de Vries equation is an appropriate model. Of special interest is the situation when the coefficient of the quadratic nonlinear term changes sign at a certain critical point. This case has been widely studied for a solitary wave, which is extinguished at the critical point and replaced by a train of solitary waves of the opposite polarity to the incident wave, riding on a pedestal of the original polarity. Here we examine the same situation for an undular bore, represented by a modulated periodic wave train. Numerical simulations and some asymptotic analysis based on Whitham modulation equations show that the leading solitary waves in the undular bore are destroyed and replaced by a developing rarefaction wave supporting emerging solitary waves of the opposite polarity. In contrast the rear of the undular bore emerges with the same shape, but with reduced wave amplitudes, a shorter overall length scale and moves more slowly.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,