Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8256510 | Physica D: Nonlinear Phenomena | 2013 | 21 Pages |
Abstract
We investigate nonlocal interaction equations with repulsive-attractive radial potentials. Such equations describe the evolution of a continuum density of particles in which they repulse (resp. attract) each other in the short (resp. long) range. We prove that under some conditions on the potential, radially symmetric solutions converge exponentially fast in some transport distance toward a spherical shell stationary state. Otherwise we prove that it is not possible for a radially symmetric solution to converge weakly toward the spherical shell stationary state. We also investigate under which condition it is possible for a non-radially symmetric solution to converge toward a singular stationary state supported on a general hypersurface. Finally we provide a detailed analysis of the specific case of the repulsive-attractive power law potential as well as numerical results.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
D. Balagué, J.A. Carrillo, T. Laurent, G. Raoul,