Article ID Journal Published Year Pages File Type
825702 International Journal of Engineering Science 2008 17 Pages PDF
Abstract

A magnetoelectroelastic analysis for a penny-shaped crack embedded in an infinite piezoelectromagnetic material is made. Taking into account the fact that electric and magnetic fields can permeate through the opening crack, the electric and magnetic boundary conditions at the crack surfaces are assumed to be semi-permeable, or depend nonlinearly on the crack opening displacement. For the case of a circular crack normal to the poling direction, the associated mixed boundary value problem is reduced to solving dual integral equations by applying the Hankel transform technique. An entire magnetoelectroelastic field is obtained in simple and explicit form. Numerical results for a cracked BaTiO3–CoFe2O4 material reveal the dependence of the electric displacement and magnetic induction at the crack surfaces with applied mechanical loading. The influences of applied electric and magnetic loadings on normalized fracture parameters are illustrated graphically for a vacuum circular crack. The impermeable and permeable cracks can be treated as two limiting cases of the present.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,