Article ID Journal Published Year Pages File Type
8263297 Experimental Gerontology 2015 40 Pages PDF
Abstract
Fibrosis of the aging heart impedes cardiac function and increases the risk of arrhythmias and heart disease. Previously, we demonstrated that exercise-induced reduction of collagen I in the aging heart was linked to a suppression of oxidative stress and transforming growth factor-beta (TGF-ß). The renin-angiotensin II system (RAS) increases oxidative stress via NADPH oxidase-2 (Nox2) and thus elevates TGF-ß and collagen accumulation. Therefore, we tested the hypothesis that exercise training would alleviate age-related upregulation of the angiotensin II receptor I (AT1R) and NADPH oxidase-2 (Nox2), concomitant with suppression of TGF-β and fibrosis. Young (3 months, n = 20) and old (31 months, n = 20) Fischer 344 × Brown Norway F1 (FBNF1) hybrid rats were assigned into sedentary and exercise groups, with exercise training rats training on a treadmill 45 min/day, 5 days/week for the next 12 weeks. Exercise training mitigated age-related upregulation of AT1R, Nox2 activity, and Nox2 subunits gp91phox and p47phox. Exercise training also attenuated TGF-ß positive staining and downstream effectors of fibrosis in the aging heart: connective tissue growth factor, phosphorylation of Smad2 at Ser423, myofibroblast proliferation, and collagen I-positive staining. Our results are consistent with the hypothesis that exercise training protects against age-dependent cardiac fibrosis by suppressing AT1R and Nox2 as part of a RAS-Nox2-TGF-β pathway.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , ,