Article ID Journal Published Year Pages File Type
8288 Biomaterials 2011 12 Pages PDF
Abstract

This study describes the creation and characterization of drug carriers prepared using the polymer poly[aniline-co-N-(1-one-butyric acid) aniline] (SPAnH) coated on Fe3O4 cores to form three types of magnetic nanoparticles (MNPs); these particles were used to enhance the therapeutic capacity and improve the thermal stability of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a compound used to treat brain tumors. The average hydrodynamic diameter of the MNPs was 89.2 ± 8.5 nm and all the MNPs displayed superparamagnetic properties. A maximum effective dose of 379.34 μg BCNU could be immobilized on 1 mg of MNP-3 (bound-BCNU-3). Bound-BCNU-3 was more stable than free-BCNU when stored at 4 °C, 25 °C or 37 °C. Bound-BCNU-3 could be concentrated at targeted sites in vitro and in vivo using an externally applied magnet. When applied to brain tumors, magnetic targeting increased the concentration and retention of bound-BCNU-3. This drug delivery system promises to provide more effective tumor treatment using lower therapeutic doses and potentially reducing the side effects of chemotherapy.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , , , , ,