Article ID Journal Published Year Pages File Type
8288710 Archives of Biochemistry and Biophysics 2018 5 Pages PDF
Abstract
The Ca2+-dependent deamidation and transamidation activities of transglutaminase 2 (TG2) are important to numerous physiological and pathological processes. Herein, we have examined the steady-state kinetics and 15(V/K) kinetic isotope effects (KIEs) for the TG2-catalyzed deamidation and transamidation of N-Benzyloxycarbonyl-l-Glutaminylglycine (Z-Gln-Gly) using putrescine as the acyl acceptor substrate. Kinetic parameters determined from initial velocity plots are consistent with previously proposed mechanisms. Significant differences in the 15(V/K) KIEs on NH3 release determined for the deamidation (0.2%) and the transamidation (2.3%) of Z-Gln-Gly suggest the rate-limiting steps of TG2 active site acylation are dependent on the presence of the acyl acceptor. We propose a plausible mechanistic explanation where substrate-induced conformational changes may play a role in promoting catalysis.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,