Article ID Journal Published Year Pages File Type
8292593 Biochemical and Biophysical Research Communications 2018 8 Pages PDF
Abstract
The epigenetic effects on expression of non-coding RNAs (e.g. microRNAs) of environmental toxin bisphenol A (BPA) have extended our understanding of the etiology of human reproductive disorders including hypospermatogenesis and androgen deficiency. BPA-induced miR-146a-5p is a potent regulator of endocrine and immune homeostasis, but its role in testis remain unexplored. We show here that in murine testis, miR-146a-5p was exclusively expressed in interstitial Leydig cells (LCs). This expression was significantly induced by BPA exposure. Consequently, the elevated miR-146a-5p exacerbated the deleterious effects of BPA on testicular steroidogenesis. Mechanistically, miR-146a-5p repressed the expression of Mta3, a pivotal chromatin remodeling transcription factor recently involved in controlling the steroidogenic activity, via directly targeting its 3′UTR. This repression thereafter rendered LCs more sensitive to BPA-elicited inhibitory effects. Conversely, ectopic expression of hMTA3 successfully rescued miR-146a-5p-elicited inhibitory effects on testicular steroidogenesis in BPA-challenged LCs. Taken together, the available data provide novel evidence that deregulation of testicular miR-146a-5p/Mta3 cascade mediates, at least in part, the steroidogenic dysfunction caused by BPA exposure.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,